Complex networked systems in fields such as physics, biology, and social sciences often involve interactions that extend beyond simple pairwise ones. Hypergraphs serve as powerful modeling tools for describing and analyzing the intricate behaviors of systems with multi-body interactions. Herein, we investigate a discrete-time nonlinear averaging dynamics with three-body interactions: an underlying hypergraph, comprising triples as hyperedges, delineates the structure of these interactions, while the vertices update their states through a weighted, state-dependent average of neighboring pairs' states. This dynamics captures reinforcing group effects, such as peer pressure, and exhibits higher-order dynamical effects resulting from a complex interplay between initial states, hypergraph topology, and nonlinearity of the update. Differently from linear averaging dynamics on graphs with two-body interactions, this model does not converge to the average of the initial states but rather induces a shift. By assuming random initial states and by making some regularity and density assumptions on the hypergraph, we prove that the dynamics converges to a multiplicatively-shifted average of the initial states, with high probability. We further characterize the shift as a function of two parameters describing the initial state and interaction strength, as well as the convergence time as a function of the hypergraph structure.


翻译:在物理、生物和社会科学等领域的复杂网络系统中,经常涉及超越简单的成对相互作用的情况。超图是描述和分析具有多体相互作用系统复杂行为的强大建模工具。本文研究三体相互作用下的离散时间非线性平均动态:一个基础的超图,包含三元组作为超边,描述这些相互作用的结构,而顶点通过周围成对状态的加权状态依赖平均值更新其状态。这种动态捕捉到增强的群体效应,如同辈压力,并表现出由初始状态、超图拓扑和更新的非线性之间复杂相互作用引起的高阶动态效应。与拥有两体相互作用的图的线性平均动态不同,该模型不会收敛到初始状态的平均值,而是会引起平移。通过假设随机初始状态,并对超图进行一些正则性和密度假设,我们证明了该动态以高概率收敛到初始状态的乘法平移平均值。我们进一步将移位表征为两个参数的函数,这两个参数描述了初始状态和相互作用强度,以及超图结构的收敛时间的函数。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
必读的7篇IJCAI 2019【图神经网络(GNN)】相关论文-Part2
专知会员服务
60+阅读 · 2020年1月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
30+阅读 · 2021年8月18日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员