Knowledge distillation is an effective method for model compression. However, it is still a challenging topic to apply knowledge distillation to detection tasks. There are two key points resulting in poor distillation performance for detection tasks. One is the serious imbalance between foreground and background features, another one is that small object lacks enough feature representation. To solve the above issues, we propose a new distillation method named dual relation knowledge distillation (DRKD), including pixel-wise relation distillation and instance-wise relation distillation. The pixel-wise relation distillation embeds pixel-wise features in the graph space and applies graph convolution to capture the global pixel relation. By distilling the global pixel relation, the student detector can learn the relation between foreground and background features, and avoid the difficulty of distilling features directly for the feature imbalance issue. Besides, we find that instance-wise relation supplements valuable knowledge beyond independent features for small objects. Thus, the instance-wise relation distillation is designed, which calculates the similarity of different instances to obtain a relation matrix. More importantly, a relation filter module is designed to highlight valuable instance relations. The proposed dual relation knowledge distillation is general and can be easily applied for both one-stage and two-stage detectors. Our method achieves state-of-the-art performance, which improves Faster R-CNN based on ResNet50 from 38.4% to 41.6% mAP and improves RetinaNet based on ResNet50 from 37.4% to 40.3% mAP on COCO 2017.


翻译:暂无翻译

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
43+阅读 · 2022年6月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关VIP内容
自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
43+阅读 · 2022年6月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员