Recovering the physical attributes of an object's appearance from its images captured under an unknown illumination is challenging yet essential for photo-realistic rendering. Recent approaches adopt the emerging implicit scene representations and have shown impressive results.However, they unanimously adopt a surface-based representation,and hence can not well handle scenes with very complex geometry, translucent object and etc. In this paper, we propose to conduct inverse volume rendering, in contrast to surface-based, by representing a scene using microflake volume, which assumes the space is filled with infinite small flakes and light reflects or scatters at each spatial location according to microflake distributions. We further adopt the coordinate networks to implicitly encode the microflake volume, and develop a differentiable microflake volume renderer to train the network in an end-to-end way in principle.Our NeMF enables effective recovery of appearance attributes for highly complex geometry and scattering object, enables high-quality relighting, material editing, and especially simulates volume rendering effects, such as scattering, which is infeasible for surface-based approaches.
翻译:从未知光照下的物体图像中恢复物理属性对于实现逼真渲染是具有挑战性的,但又是必不可少的。 最近的方法采用新兴的隐式场景表示并取得了惊人的结果。但是,它们普遍采用基于表面的表示,因此无法很好地处理非常复杂的几何形状、半透明物体等场景。在本文中,我们提出采用微片体代表场景,通过逆向体积渲染来表示场景,微片体假定空间填满了无限小的簇片,并且光在每个空间位置根据微片分布反射或散射。我们进一步采用坐标网络来隐式编码微片体,并开发了一个可微分的微片体渲染器,在原则上以端到端的方式训练网络。我们的NeMF能够有效地恢复高度复杂几何形状和散射对象的外观属性,实现高质量的重新照明、材料编辑,并特别模拟体积渲染效果,例如散射,这对于基于表面的方法来说是不可行的。