Sparse coding strategies have been lauded for their parsimonious representations of data that leverage low dimensional structure. However, inference of these codes typically relies on an optimization procedure with poor computational scaling in high-dimensional problems. For example, sparse inference in the representations learned in the high-dimensional intermediary layers of deep neural networks (DNNs) requires an iterative minimization to be performed at each training step. As such, recent, quick methods in variational inference have been proposed to infer sparse codes by learning a distribution over the codes with a DNN. In this work, we propose a new approach to variational sparse coding that allows us to learn sparse distributions by thresholding samples, avoiding the use of problematic relaxations. We first evaluate and analyze our method by training a linear generator, showing that it has superior performance, statistical efficiency, and gradient estimation compared to other sparse distributions. We then compare to a standard variational autoencoder using a DNN generator on the Fashion MNIST and CelebA datasets
翻译:令人称赞的是,这些代码的粗略编码战略是其利用低维结构的数据的简单化的表达方式。然而,这些代码的推断通常依赖于一种优化程序,在高维问题中,计算尺度不力。例如,在深神经网络(DNNs)高维中间层所学的演示中,很少的推论要求在每个培训步骤中进行迭接最小化。因此,最近,通过与 DNN 一起学习对代码的分布,提出了快速的变式推断方法,以推断稀释代码。在这项工作中,我们提出了一种新的变式稀释编码方法,使我们能够通过临界样本学习稀散的分布,避免使用有问题的放松。我们首先通过培训直线式生成器来评估和分析我们的方法,表明它与其他稀散分布相比,性生成器的性、统计效率和梯度估计值更高。然后,我们用在Fashian MNIST 和 CeebA 数据集上使用DNN发电机将标准变式自动电解码器进行了比较。