The maximum mean discrepancy (MMD) test could in principle detect any distributional discrepancy between two datasets. However, it has been shown that the MMD test is unaware of adversarial attacks -- the MMD test failed to detect the discrepancy between natural and adversarial data. Given this phenomenon, we raise a question: are natural and adversarial data really from different distributions? The answer is affirmative -- the previous use of the MMD test on the purpose missed three key factors, and accordingly, we propose three components. Firstly, the Gaussian kernel has limited representation power, and we replace it with an effective deep kernel. Secondly, the test power of the MMD test was neglected, and we maximize it following asymptotic statistics. Finally, adversarial data may be non-independent, and we overcome this issue with the wild bootstrap. By taking care of the three factors, we verify that the MMD test is aware of adversarial attacks, which lights up a novel road for adversarial data detection based on two-sample tests.


翻译:最大平均差异(MMD)测试原则上可以检测出两个数据集之间的任何分布差异。然而,已经表明MMD测试并不知道对抗性攻击 -- -- MMD测试未能发现自然数据和对抗性数据之间的差异。鉴于这一现象,我们提出了一个问题:自然和对抗性数据是否真的来自不同的分布?答案是肯定的 -- -- 先前对目的进行MMD测试时遗漏了三个关键因素,因此,我们提议三个组成部分。首先,高斯内核的表示力有限,我们用一个有效的深核取代它。第二,MMD测试的测试力被忽视,我们根据无约束性统计数据将它最大化。最后,对抗性数据可能是非独立数据,我们用野生靴子克服了这个问题。我们考虑到这三个因素,我们核实MMD测试意识到了对抗性攻击,这为基于两次模量测试的对抗性数据检测开辟了新的道路。

1
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
56+阅读 · 2021年4月12日
【上海交大】<操作系统> 2021课程,附课件
专知会员服务
41+阅读 · 2021年4月3日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月9日
Arxiv
12+阅读 · 2020年12月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关VIP内容
专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
56+阅读 · 2021年4月12日
【上海交大】<操作系统> 2021课程,附课件
专知会员服务
41+阅读 · 2021年4月3日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员