Stochastic Gradient Descent Langevin Dynamics (SGLD) algorithms, which add noise to the classic gradient descent, are known to improve the training of neural networks in some cases where the neural network is very deep. In this paper we study the possibilities of training acceleration for the numerical resolution of stochastic control problems through gradient descent, where the control is parametrized by a neural network. If the control is applied at many discretization times then solving the stochastic control problem reduces to minimizing the loss of a very deep neural network. We numerically show that Langevin algorithms improve the training on various stochastic control problems like hedging and resource management, and for different choices of gradient descent methods.
翻译:古老的梯度梯度梯度下降增加噪音的Stochatic Gradient Emprole Langevin Dynamics (SGLD) 算法(SGLD) 增加典型的梯度下降的噪音,据了解,在神经网络非常深的一些情况中,这些算法可以改进神经网络的培训。在本文中,我们研究通过梯度下降(控制由神经网络进行平衡),加速对随机控制问题进行数字解决的培训的可能性。如果这种控制在许多离散的时期应用,那么解决随机控制问题就会减少一个非常深的神经网络的损失。我们用数字显示,Langevin算法可以改进关于诸如对冲和资源管理等各种梯度控制问题的培训,并改进对梯度下降方法的不同选择。