Single channel blind source separation (SCBSS) refers to separate multiple sources from a mixed signal collected by a single sensor. The existing methods for SCBSS mainly focus on separating two sources and have weak generalization performance. To address these problems, an algorithm is proposed in this paper to separate multiple sources from a mixture by designing a parallel dual generative adversarial Network (PDualGAN) that can build the relationship between a mixture and the corresponding multiple sources to realize one-to-multiple cross-domain mapping. This algorithm can be applied to any mixed model such as linear instantaneous mixed model and convolutional mixed model. Besides, one-to-multiple datasets are created which including the mixtures and corresponding sources for this study. The experiment was carried out on four different datasets and tested with signals mixed in different proportions. Experimental results show that the proposed algorithm can achieve high performance in peak signal-to-noise ratio (PSNR) and correlation, which outperforms state-of-the-art algorithms.


翻译:单一频道盲源分离(SCBSS)是指从单个传感器收集的混合信号中分离出多种来源。 SCBSS的现有方法主要侧重于分离两个来源,其一般性能较弱。为了解决这些问题,本文件建议了一种算法,将多种来源与混合物分离,方法是设计一个平行的双基因对抗网络(PDUALGAN),可以建立混合物和相应的多个来源之间的关系,以实现一至多个跨域绘图。这种算法可以适用于任何混合模型,如线性瞬间混合模型和卷变混合模型。此外,还建立了一至多个数据集,其中包括混合物和本研究的相应来源。实验是在四个不同的数据集上进行的,用不同比例的混合信号进行测试。实验结果显示,拟议的算法可以在信号-噪音最高比(PSNR)和关联中取得高性性能,这与最新值的算法不相符。

0
下载
关闭预览

相关内容

【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
14+阅读 · 2020年12月17日
Multiple Combined Constraints for Image Stitching
Arxiv
3+阅读 · 2018年9月18日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员