Markov decision processes are a ubiquitous formalism for modelling systems with non-deterministic and probabilistic behavior. Verification of these models is subject to the famous state space explosion problem. We alleviate this problem by exploiting a hierarchical structure with repetitive parts. This structure not only occurs naturally in robotics, but also in probabilistic programs describing, e.g., network protocols. Such programs often repeatedly call a subroutine with similar behavior. In this paper, we focus on a local case, in which the subroutines have a limited effect on the overall system state. The key ideas to accelerate analysis of such programs are (1) to treat the behavior of the subroutine as uncertain and only remove this uncertainty by a detailed analysis if needed, and (2) to abstract similar subroutines into a parametric template, and then analyse this template. These two ideas are embedded into an abstraction-refinement loop that analyses hierarchical MDPs. A prototypical implementation shows the efficacy of the approach.
翻译:Markov 决策程序是非确定性和概率行为的建模系统无处不在的形式主义。 这些模型的验证是著名的空间爆炸问题。 我们通过利用带有重复部件的等级结构来缓解这一问题。 这种结构不仅在机器人中自然发生,而且在描述例如网络协议的概率性程序中也自然发生。 这种程序经常反复叫出一个具有类似行为的子例程。 在本文中,我们侧重于一个本地案例,在这个案例中,子例程对整个系统状态的影响有限。 加速分析这类程序的关键想法是:(1) 将子例程的行为视为不确定的,只在必要时通过详细分析来消除这种不确定性,(2) 将类似的子例程抽取成一个参数模板,然后分析这个模板。 这两种想法被嵌入一个分析等级 MDP 的抽象-精细循环中。 一种准的实施工作显示了这种方法的功效。