Digital Twins are digital representations of systems in the Internet of Things (IoT) that are often based on AI models that are trained on data from those systems. Semantic models are used increasingly to link these datasets from different stages of the IoT systems life-cycle together and to automatically configure the AI modelling pipelines. This combination of semantic models with AI pipelines running on external datasets raises unique challenges particular if rolled out at scale. Within this paper we will discuss the unique requirements of applying semantic graphs to automate Digital Twins in different practical use cases. We will introduce the benchmark dataset DTBM that reflects these characteristics and look into the scaling challenges of different knowledge graph technologies. Based on these insights we will propose a reference architecture that is in-use in multiple products in IBM and derive lessons learned for scaling knowledge graphs for configuring AI models for Digital Twins.
翻译:数字双胞胎是“物”互联网系统中各系统的数字表示,这些数字双胞胎往往是以经过这些系统的数据培训的AI模型为基础的。语义模型越来越多地被用来将这些来自IOT系统生命周期不同阶段的数据集连接在一起,并自动配置AI建模管道。这种语义模型与在外部数据集上运行的AI管道相结合,如果大规模推出,将带来独特的挑战。在本文件中,我们将讨论在不同的实际使用案例中应用语义图将数字双胞胎自动化的独特要求。我们将引入反映这些特点的基准数据集DTBM,并研究不同知识图形技术的规模挑战。基于这些见解,我们将提出一个在IBM多种产品中使用的参考结构,并总结在为数字双胞胎配置AI模型缩放知识图表方面的经验教训。