Restoring the clean background from the superimposed images containing a noisy layer is the common crux of a classical category of tasks on image restoration such as image reflection removal, image deraining and image dehazing. These tasks are typically formulated and tackled individually due to the diverse and complicated appearance patterns of noise layers within the image. In this work we present the Deep-Masking Generative Network (DMGN), which is a unified framework for background restoration from the superimposed images and is able to cope with different types of noise. Our proposed DMGN follows a coarse-to-fine generative process: a coarse background image and a noise image are first generated in parallel, then the noise image is further leveraged to refine the background image to achieve a higher-quality background image. In particular, we design the novel Residual Deep-Masking Cell as the core operating unit for our DMGN to enhance the effective information and suppress the negative information during image generation via learning a gating mask to control the information flow. By iteratively employing this Residual Deep-Masking Cell, our proposed DMGN is able to generate both high-quality background image and noisy image progressively. Furthermore, we propose a two-pronged strategy to effectively leverage the generated noise image as contrasting cues to facilitate the refinement of the background image. Extensive experiments across three typical tasks for image background restoration, including image reflection removal, image rain steak removal and image dehazing, show that our DMGN consistently outperforms state-of-the-art methods specifically designed for each single task.


翻译:恢复含有噪音层的超压图像的清洁背景是典型图像恢复任务的典型类别,如图像反射去除、图像脱光和图像脱色。这些任务通常由于图像中噪音层的外观模式复杂多样而单独制定和处理。在这项工作中,我们展示了深映生成网络(DMGN),这是从超压层图像中背景恢复的统一框架,能够应对不同类型的噪音。我们提议的DMGN遵循一个粗到平面的基因化过程:首先生成粗背景图像和噪音图像,然后进一步利用噪音图像来改进背景图像,以获得更高质量的背景图像。特别是,我们设计了新颖的后映细胞,作为我们DMGNGN的核心操作单位,目的是通过学习一个用于控制信息流动的模版面面罩来增强有效信息,抑制图像生成过程中的负面信息。我们提议的DMGNGM(DG)能够同时生成一种粗略的背景图像和噪音图像,具体地将图像去除,并逐步展示三层图像升级。此外,我们提议一种高质量背景图像的图像升级方法,以持续地显示整个图像的平面平面平整。

0
下载
关闭预览

相关内容

【AAAI2021】记忆门控循环网络
专知会员服务
48+阅读 · 2020年12月28日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2017年11月4日
VIP会员
Top
微信扫码咨询专知VIP会员