We improve the current best running time value to invert sparse matrices over finite fields, lowering it to an expected $O\big(n^{2.2131}\big)$ time for the current values of fast rectangular matrix multiplication. We achieve the same running time for the computation of the rank and nullspace of a sparse matrix over a finite field. This improvement relies on two key techniques. First, we adopt the decomposition of an arbitrary matrix into block Krylov and Hankel matrices from Eberly et al. (ISSAC 2007). Second, we show how to recover the explicit inverse of a block Hankel matrix using low displacement rank techniques for structured matrices and fast rectangular matrix multiplication algorithms. We generalize our inversion method to block structured matrices with other displacement operators and strengthen the best known upper bounds for explicit inversion of block Toeplitz-like and block Hankel-like matrices, as well as for explicit inversion of block Vandermonde-like matrices with structured blocks. As a further application, we improve the complexity of several algorithms in topological data analysis and in finite group theory.
翻译:我们改进了当前最佳运行时间值, 以在有限字段上倒置稀薄矩阵, 将其降低到快速矩形矩阵乘法当前值的预期值$O\big(n ⁇ 2.2131 ⁇ big) 。 我们用同样的运行时间计算有限字段中稀薄矩阵的排位和空空间。 这一改进取决于两种关键技术。 首先, 我们采用将任意矩阵分解到Eberly 等人的块 Krylov 和 Hankel 矩阵中的块状 Krylov 和 Hankel 矩阵( ISSC 2007) 。 第二, 我们展示了如何利用结构矩阵和快速矩形矩阵乘法的低位位级技术恢复汉克尔矩阵的明显反向。 我们一般地将我们的反向方法用于与其他偏移操作者隔开结构矩阵, 并加强已知的最佳上限, 以明确转换Teplitz 类块和Hankel 类矩阵的块块状, 以及用结构块状块状的块状矩阵进行明确的反向。 (ISAC 2007) 。 作为进一步的应用, 我们改进了顶部数据分析和有限组理论中若干算法的复杂性 。