The model of partially observed linear stochastic differential equations depending on some unknown parameters is considered. An proximation of the unobserved component is proposed. This approximation is realized in three steps. First an estimator of the thod of moments of unknown parameter is constructed. Then this estimator is used for defining the One-step MLE-process and nally the last estimator is substituted to the equations of Kalman-Bucy (K-B) filter. The solution of obtained K-B equations ovide us the approximation (adaptive K-B filter). The asymptotic properties of all mentioned estimators and MLE and Bayesian timators of the unknown parameters are described. The asymptotic efficiency of the proposed adaptive filter is shown.
翻译:本文考虑了依赖于一些未知参数的部分观测线性随机微分方程模型。我们提出了一种未观测分量的近似方法。该近似分为三步。首先构造未知参数矩估计的矩法。然后使用这个估计量定义了一步MLE过程,最后将最终估计量代入Kalman-Bucy(K-B)滤波器方程中。解决了得到的K-B方程组可以提供我们的近似(自适应K-B滤波器)。描述了所有提及的估计量和MLE和贝叶斯估计量的渐近性质。展示了提出的自适应滤波器的渐近效率。