ChatGPT has the ability to generate grammatically flawless and seemingly-human replies to different types of questions from various domains. The number of its users and of its applications is growing at an unprecedented rate. Unfortunately, use and abuse come hand in hand. In this paper, we study whether a machine learning model can be effectively trained to accurately distinguish between original human and seemingly human (that is, ChatGPT-generated) text, especially when this text is short. Furthermore, we employ an explainable artificial intelligence framework to gain insight into the reasoning behind the model trained to differentiate between ChatGPT-generated and human-generated text. The goal is to analyze model's decisions and determine if any specific patterns or characteristics can be identified. Our study focuses on short online reviews, conducting two experiments comparing human-generated and ChatGPT-generated text. The first experiment involves ChatGPT text generated from custom queries, while the second experiment involves text generated by rephrasing original human-generated reviews. We fine-tune a Transformer-based model and use it to make predictions, which are then explained using SHAP. We compare our model with a perplexity score-based approach and find that disambiguation between human and ChatGPT-generated reviews is more challenging for the ML model when using rephrased text. However, our proposed approach still achieves an accuracy of 79%. Using explainability, we observe that ChatGPT's writing is polite, without specific details, using fancy and atypical vocabulary, impersonal, and typically it does not express feelings.
翻译:聊天GPT 能够生成对不同领域不同类型问题的语法上的完美和貌似人性的答复。 用户数量及其应用数量正在以前所未有的速度增长。 不幸的是, 使用和滥用同时发生。 在本文中, 我们研究机器学习模式能否得到有效培训, 准确区分原始人和貌似人( 即聊天GPT 生成的) 文本, 特别是这一文本很短的时候。 此外, 我们使用一个可解释的人工智能框架, 以深入了解为区分查盖特生成的文本和人生成的文本而培训的模型背后的推理。 目标是分析模型决定和确定任何具体模式或特征。 我们的研究侧重于短期在线审查, 进行两项实验比较人造和查盖特生成的文本。 第一次实验涉及查格普特文本, 而第二次实验则涉及对原人类生成的审评进行翻版生成的文本。 我们精细描述一个基于变式的货币模型, 并且用它来做出预测, 然后用SHAPP来解释。 我们用一个不易懂的模型来比较我们的模型, 使用一种具有挑战性的G 分级的计算方法, 。 然而, 我们用一种在使用一种具有挑战性的版本的版本的版本的版本的版本的版本, 我们使用一种比较了我们使用的版本的版本的版本的版本的版本的版本的版本, 使用一种比较了一种比较了一种比较了一种比较了我们使用的版本的版本的版本的版本的版本的版本的版本的版本, 。