We present a domain-specific type theory for constructions and proofs in category theory. The type theory axiomatizes notions of category, functor, profunctor and a generalized form of natural transformations. The type theory imposes an ordered linear restriction on standard predicate logic, which guarantees that all functions between categories are functorial, all relations are profunctorial, and all transformations are natural by construction, with no separate proofs necessary. Important category theoretic proofs such as the Yoneda lemma and Co-yoneda lemma become simple type theoretic proofs about the relationship between unit, tensor and (ordered) function types, and can be seen to be ordered refinements of theorems in predicate logic. The type theory is sound and complete for a categorical model in \emph{virtual equipments}, which model both internal and enriched category theory. While the proofs in our type theory look like standard set-based arguments, the syntactic discipline ensure that all proofs and constructions carry over to enriched and internal settings as well.
翻译:我们为分类理论中的构造和证据提出了一个特定域类型的理论。 类型理论将类别、 随身携带者、 执行者和一般形式的自然变异等概念进行分解。 类型理论对标准上游逻辑施加了有命令的线性限制, 保证各类别之间的所有功能都是托盘, 所有关系都是源头式的, 所有变异都是自然的, 不需要单独的证明。 重要的类别理论证据, 如Yoneda lemma 和 Co-yonda lemma 等, 成为关于单元、 发声和( 有序) 函数类型之间关系的简单类型的理论证据, 并且可以被看成是上游逻辑中标语的有秩序的精细。 类型理论对于计算内部和浓缩的分类理论的绝对模型来说是合理和完整的。 我们类型理论中的证据看上去像基于标准集的参数, 合成学科纪律确保所有证据和构造和构造都传到浓缩和内部环境。