As surgical interventions trend towards minimally invasive approaches, Concentric Tube Robots (CTRs) have been explored for various interventions such as brain, eye, fetoscopic, lung, cardiac and prostate surgeries. Arranged concentrically, each tube is rotated and translated independently to move the robot end-effector position, making kinematics and control challenging. Classical model-based approaches have been previously investigated with developments in deep learning based approaches outperforming more classical approaches in both forward kinematics and shape estimation. We propose a deep reinforcement learning approach to control where we generalise across two to four systems, an element not yet achieved in any other deep learning approach for CTRs. In this way we explore the likely robustness of the control approach. Also investigated is the impact of rotational constraints applied on tube actuation and the effects on error metrics. We evaluate inverse kinematics errors and tracking error for path following tasks and compare the results to those achieved using state of the art methods. Additionally, as current results are performed in simulation, we also investigate a domain transfer approach known as domain randomization and evaluate error metrics as an initial step towards hardware implementation. Finally, we compare our method to a Jacobian approach found in literature.


翻译:由于外科干预趋势趋向于尽量减少侵入性,对脑部、眼部、胎儿、肺部、心脏和前列腺外科手术等各种干预措施探索了共心管机器人(CTRs),对脑部、眼部、胎儿、肺部、心脏和前列腺外科手术等各种干预措施探索了深度强化学习方法,对每个管子进行旋转和独立翻译,以移动机器人的终端效应位置,使动能学和控制具有挑战性;对传统模式方法进行了调查,在深层次学习方法方面的发展情况比前方运动学和形状估测方法更典型的方法要好;我们提议了一种深度强化学习方法,以控制我们两个至四个系统的通用,这是其他任何深层次的外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外科外

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2023年1月19日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员