We consider the cops and robber game variant consisting of one cop and one robber on time-varying graphs (TVG). The considered TVGs are edge periodic graphs, i.e., for each edge, a binary string $s_e$ determines in which time step the edge is present, namely the edge $e$ is present in time step $t$ if and only if the string $s_e$ contains a $1$ at position $t \mod |s_e|$. This periodicity allows for a compact representation of the infinite TVG. We proof that even for very simple underlying graphs, i.e., directed and undirected cycles the problem whether a cop-winning strategy exists is NP-hard and W[1]-hard parameterized by the number of vertices. Our second main result are matching lower bounds for the ration between the length of the underlying cycle and the least common multiple (LCM) of the lengths of binary strings describing edge-periodicies over which the graph is robber-winning. Our third main result improves the previously known EXPTIME upper bound for Periodic Cop and Robber on general edge periodic graphs to PSPACE-membership.
翻译:我们考虑的是警察和强盗游戏的变体,其中包括一个警察和一个在时间变化图(TVG)上的强盗。被考虑的TVG是一个边缘周期图,也就是说,对于每个边缘,一个二进制字符串 $s_e$(e$) 确定在哪个时间步骤中,就是说,在时间步骤中,在美元或美元(e$) 包含一个美元($t mod $_s_e ⁇ $) 位置的一美元时,我们考虑的是警察和强盗游戏。这个周期允许对无限TVG(TVG) 进行一个紧凑的表示。我们证明,即使对于非常简单的基本图,即指导和非定向的图形,也存在一个问题周期,即是否存在一个警察结识战略的双轨(NP-hard)和W[1]美元(W1] 硬参数,由悬崖数来决定。我们的第二个主要结果是,在基本周期的长度与描述该图所覆盖的边缘-周期长度中最小的(LCMM)的二进段长度(LCM)。我们第三个主要结果改进了以前已知的IPIME平面GPrealGPlassal Graimal Greal Graimal Greal Grealalalalalalalalalalalalalalalalal 上众所周知。我们第三个主要结果将改进了已知的远端。