Resiliency is the ability to quickly recover from a violation and avoid future violations for as long as possible. Such a property is of fundamental importance for Cyber-Physical Systems (CPS), and yet, to date, there is no widely agreed-upon formal treatment of CPS resiliency. We present an STL-based framework for reasoning about resiliency in CPS in which resiliency has a syntactic characterization in the form of an STL-based Resiliency Specification (SRS). Given an arbitrary STL formula $\varphi$, time bounds $\alpha$ and $\beta$, the SRS of $\varphi$, $R_{\alpha,\beta}(\varphi)$, is the STL formula $\neg\varphi\mathbf{U}_{[0,\alpha]}\mathbf{G}_{[0,\beta)}\varphi$, specifying that recovery from a violation of $\varphi$ occur within time $\alpha$ (recoverability), and subsequently that $\varphi$ be maintained for duration $\beta$ (durability). These $R$-expressions, which are atoms in our SRS logic, can be combined using STL operators, allowing one to express composite resiliency specifications, e.g., multiple SRSs must hold simultaneously, or the system must eventually be resilient. We define a quantitative semantics for SRSs in the form of a Resilience Satisfaction Value (ReSV) function $r$ and prove its soundness and completeness w.r.t. STL's Boolean semantics. The $r$-value for $R_{\alpha,\beta}(\varphi)$ atoms is a singleton set containing a pair quantifying recoverability and durability. The $r$-value for a composite SRS formula results in a set of non-dominated recoverability-durability pairs, given that the ReSVs of subformulas might not be directly comparable (e.g., one subformula has superior durability but worse recoverability than another). To the best of our knowledge, this is the first multi-dimensional quantitative semantics for an STL-based logic. Two case studies demonstrate the practical utility of our approach.
翻译:恢复能力是快速从违反中恢复的能力, 并避免未来尽可能长的时间违约。 这种属性对于网络- 物理系统( CPS) 具有根本重要性, 但迄今为止, 尚未广泛同意正式处理 CPS 恢复性。 我们提出了一个基于STL 的逻辑框架, 用于推理 CPS 恢复性, 恢复能力具有同步性的方法 。 基于STL 的恢复性规格 。 鉴于一个任意的 STL 公式 $\ varphi$, 时间约束 $alpha$ 和 $\beta$, SRS 美元, 美元, 并且最终SValphia 的Saldiality, Stallistaltialal restitude a la listallistallistaltical 。 以美元 美元, 其恢复能力必须被维持在1美元或1美元。