In this work, we propose a multi-armed bandit-based framework for identifying a compact set of informative data instances (i.e., the prototypes) from a source dataset $\mathcal{S}$ that best represents a given target set $\mathcal{T}$. Prototypical examples of a given dataset offer interpretable insights into the underlying data distribution and assist in example-based reasoning, thereby influencing every sphere of human decision-making. Current state-of-the-art prototype selection approaches require $O(|\mathcal{S}||\mathcal{T}|)$ similarity comparisons between source and target data points, which becomes prohibitively expensive for large-scale settings. We propose to mitigate this limitation by employing stochastic greedy search in the space of prototypical examples and multi-armed bandits for reducing the number of similarity comparisons. Our randomized algorithm, ProtoBandit, identifies a set of $k$ prototypes incurring $O(k|\mathcal{S}|)$ similarity comparisons, which is independent of the size of the target set. An interesting outcome of our analysis is for the $k$-medoids clustering problem ($\mathcal{T} = \mathcal{S}$ setting) in which we show that our algorithm ProtoBandit approximates the BUILD step solution of the partitioning around medoids (PAM) method in $O(k|\mathcal{S}|)$ complexity. Empirically, we observe that ProtoBandit reduces the number of similarity computation calls by several orders of magnitudes ($100-1000$ times) while obtaining solutions similar in quality to those from state-of-the-art approaches.


翻译:在这项工作中,我们提出了一个基于多武装的土匪框架,用于从源数据集 $\ mathcal{S}$ 最能代表一个设定目标的$\ mathcal{T}$。 给定数据集的模型示例提供了对基本数据分布的可解释的洞察力,有助于以实例为基础的推理,从而影响人类决策的每个领域。 目前最先进的原型选择方法需要从源和目标数据点之间进行一套精确的比较(即原型),对于大型设置来说,这种比较变得过于昂贵。我们提议通过在模型范例空间中采用贪婪搜索和多武装的匪徒来减少类似比较的次数来减少这一限制。我们随机的算法ProtoBandit确定了一组美元原型(k_macal{Scal{Scal_lational_al_lational_lational_lation$ 美元),这与设定的目标大小无关。在Oral_ral_ral_al roal_al roal roal_Oal roal roupal_Bal_Broma 问题中,我们的一个有趣的分析结果结果通过一个相似的结果,在Bal_B_al_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx)。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
68+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
114+阅读 · 2022年4月21日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
68+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
114+阅读 · 2022年4月21日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员