In this work, we propose a multi-armed bandit-based framework for identifying a compact set of informative data instances (i.e., the prototypes) from a source dataset $\mathcal{S}$ that best represents a given target set $\mathcal{T}$. Prototypical examples of a given dataset offer interpretable insights into the underlying data distribution and assist in example-based reasoning, thereby influencing every sphere of human decision-making. Current state-of-the-art prototype selection approaches require $O(|\mathcal{S}||\mathcal{T}|)$ similarity comparisons between source and target data points, which becomes prohibitively expensive for large-scale settings. We propose to mitigate this limitation by employing stochastic greedy search in the space of prototypical examples and multi-armed bandits for reducing the number of similarity comparisons. Our randomized algorithm, ProtoBandit, identifies a set of $k$ prototypes incurring $O(k|\mathcal{S}|)$ similarity comparisons, which is independent of the size of the target set. An interesting outcome of our analysis is for the $k$-medoids clustering problem ($\mathcal{T} = \mathcal{S}$ setting) in which we show that our algorithm ProtoBandit approximates the BUILD step solution of the partitioning around medoids (PAM) method in $O(k|\mathcal{S}|)$ complexity. Empirically, we observe that ProtoBandit reduces the number of similarity computation calls by several orders of magnitudes ($100-1000$ times) while obtaining solutions similar in quality to those from state-of-the-art approaches.
翻译:在这项工作中,我们提出了一个基于多武装的土匪框架,用于从源数据集 $\ mathcal{S}$ 最能代表一个设定目标的$\ mathcal{T}$。 给定数据集的模型示例提供了对基本数据分布的可解释的洞察力,有助于以实例为基础的推理,从而影响人类决策的每个领域。 目前最先进的原型选择方法需要从源和目标数据点之间进行一套精确的比较(即原型),对于大型设置来说,这种比较变得过于昂贵。我们提议通过在模型范例空间中采用贪婪搜索和多武装的匪徒来减少类似比较的次数来减少这一限制。我们随机的算法ProtoBandit确定了一组美元原型(k_macal{Scal{Scal_lational_al_lational_lational_lation$ 美元),这与设定的目标大小无关。在Oral_ral_ral_al roal_al roal roal_Oal roal roupal_Bal_Broma 问题中,我们的一个有趣的分析结果结果通过一个相似的结果,在Bal_B_al_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx)。