We describe a simple deterministic $O( \varepsilon^{-1} \log \Delta)$ round distributed algorithm for $(2\alpha+1)(1 + \varepsilon)$ approximation of minimum weighted dominating set on graphs with arboricity at most $\alpha$. Here $\Delta$ denotes the maximum degree. We also show a lower bound proving that this round complexity is nearly optimal even for the unweighted case, via a reduction from the celebrated KMW lower bound on distributed vertex cover approximation [Kuhn, Moscibroda, and Wattenhofer JACM'16]. Our algorithm improves on all the previous results (that work only for unweighted graphs) including a randomized $O(\alpha^2)$ approximation in $O(\log n)$ rounds [Lenzen and Wattenhofer DISC'10], a deterministic $O(\alpha \log \Delta)$ approximation in $O(\log \Delta)$ rounds [Lenzen and Wattenhofer DISC'10], a deterministic $O(\alpha)$ approximation in $O(\log^2 \Delta)$ rounds [implicit in Bansal and Umboh IPL'17 and Kuhn, Moscibroda, and Wattenhofer SODA'06], and a randomized $O(\alpha)$ approximation in $O(\alpha\log n)$ rounds [Morgan, Solomon and Wein DISC'21]. We also provide a randomized $O(\alpha \log\Delta)$ round distributed algorithm that sharpens the approximation factor to $\alpha(1+o(1))$. If each node is restricted to do polynomial-time computations, our approximation factor is tight in the first order as it is NP-hard to achieve $\alpha - 1 - \varepsilon$ approximation [Bansal and Umboh IPL'17].
翻译:我们描述一个简单的确定 $O (\ varepsil ⁇ -1}\ log\ Delta) 圆分配算法 $ (2\ alpha+1) 1 +\ varepsilon) 。 这里$\ delta$ 表示最大度 。 我们还展示了一个较低的约束性证明, 即使在未加权的案例中, 这一回合的复杂性也几乎是最佳的, 通过减少在分布式顶端覆盖近效上所庆祝的KMW 下限 [Kuhn, Moscibroda, 和Wattenhofer JACM'16] 。 我们的算法改进了所有先前结果( 仅用于未加权的图形 $ (\ dalpha2), 包括随机化的 $ (美元 (美元) 美元 (美元) 美元 。 我们的周期 [ 货币和 货币 货币( 美元), 货币( 美元) 和 货币( 货币( 美元) 的货币( 美元) 和货币( 货币( 美元) 货币( 美元) 美元( 美元) 货币( 美元) 美元) 货币和货币( 美元) 的货币( 美元) 货币( 美元) 美元(美元) 美元)