Object detection on drone-captured scenarios is a recent popular task. As drones always navigate in different altitudes, the object scale varies violently, which burdens the optimization of networks. Moreover, high-speed and low-altitude flight bring in the motion blur on the densely packed objects, which leads to great challenge of object distinction. To solve the two issues mentioned above, we propose TPH-YOLOv5. Based on YOLOv5, we add one more prediction head to detect different-scale objects. Then we replace the original prediction heads with Transformer Prediction Heads (TPH) to explore the prediction potential with self-attention mechanism. We also integrate convolutional block attention model (CBAM) to find attention region on scenarios with dense objects. To achieve more improvement of our proposed TPH-YOLOv5, we provide bags of useful strategies such as data augmentation, multiscale testing, multi-model integration and utilizing extra classifier. Extensive experiments on dataset VisDrone2021 show that TPH-YOLOv5 have good performance with impressive interpretability on drone-captured scenarios. On DET-test-challenge dataset, the AP result of TPH-YOLOv5 are 39.18%, which is better than previous SOTA method (DPNetV3) by 1.81%. On VisDrone Challenge 2021, TPHYOLOv5 wins 5th place and achieves well-matched results with 1st place model (AP 39.43%). Compared to baseline model (YOLOv5), TPH-YOLOv5 improves about 7%, which is encouraging and competitive.
翻译:在无人机捕获的情景中,无人机物体探测是一项最近流行的任务。 当无人机总是在不同高度导航时, 物体的规模会变化剧烈, 从而给网络的优化带来负担。 此外, 高速和低高度的飞行会让密集包装物体的运动变得模糊, 从而导致对物体区别的极大挑战。 为了解决上述两个问题, 我们提议在 YOLOv5 的基础上增加一个预测头来探测不同尺度的物体。 然后我们用变压预测头来取代最初的预测头, 用自留机制( TPH) 来探索预测潜力。 我们还将脉动区块注意模型( CBAM) 来寻找密集物体的情景的注意区域。 为了进一步改进我们提议的 TPH- YOLOv5, 我们提供了一系列有用的战略, 如数据增强、多尺度测试、多模型整合以及使用额外的分类。 在Vis- Drone- 2021 的模型中进行的广泛实验显示, TPH- YOL-YOVOvOV5 的预测性结果在无人驾驶式定位图集中具有令人印象深刻印象深刻的可理解性判读性。 在 TETOVOL- 5OVAL- 上, 5OVAL5 上, 改进了前的 Rio- 5- 和前的 REVAL- ROADADAWIW- s