Due to their pedagogical advantages, large final projects in information visualization courses have become standard practice. Students take on a client--real or simulated--a dataset, and a vague set of goals to create a complete visualization or visual analytics product. Unfortunately, many projects suffer from ambiguous goals, over or under-constrained client expectations, and data constraints that have students spending their time on non-visualization problems (e.g., data cleaning). These are important skills, but are often secondary course objectives, and unforeseen problems can majorly hinder students. We created an alternative for our information visualization course: Roboviz, a real-time game for students to play by building a visualization-focused interface. By designing the game mechanics around four different data types, the project allows students to create a wide array of interactive visualizations. Student teams play against their classmates with the objective to collect the most (good) robots. The flexibility of the strategies encourages variability, a range of approaches, and solving wicked design constraints. We describe the construction of this game and report on student projects over two years. We further show how the game mechanics can be extended or adapted to other game-based projects.


翻译:由于他们的教学优势,信息可视化课程中的大型最终项目已成为标准做法。学生们选择了一个客户真实或模拟的数据集,以及一套模糊的目标,以创建完整的可视化或视觉分析产品。不幸的是,许多项目的目标模糊,客户期望过高或限制不足,数据限制使学生们花时间处理非可视化问题(例如数据清理),这些都是重要的技能,但往往是二级课程目标,而意外的问题会严重阻碍学生们。我们为我们的信息可视化课程创建了另一种选择:Roboviz,这是学生们通过建立以视觉化为重点的界面来玩的实时游戏。通过围绕四种不同的数据类型设计游戏机械,该项目使学生们能够创建广泛的交互式可视化。学生团队与同学们玩游戏,目的是收集最优秀的(好的)机器人。这些策略的灵活性鼓励变化性,一系列方法,并解决邪恶的设计限制。我们描述了这个游戏的构造,并报告了两年来学生项目的情况。我们进一步展示了游戏机能如何扩展或调整到其他以游戏为基础的项目。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
1+阅读 · 2022年10月4日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员