For a directed graph $G$ with $n$ vertices and a start vertex $u_{\sf start}$, we wish to (approximately) sample an $L$-step random walk over $G$ starting from $u_{\sf start}$ with minimum space using an algorithm that only makes few passes over the edges of the graph. This problem found many applications, for instance, in approximating the PageRank of a webpage. If only a single pass is allowed, the space complexity of this problem was shown to be $\tilde{\Theta}(n \cdot L)$. Prior to our work, a better space complexity was only known with $\tilde{O}(\sqrt{L})$ passes. We settle the space complexity of this random walk simulation problem for two-pass streaming algorithms, showing that it is $\tilde{\Theta}(n \cdot \sqrt{L})$, by giving almost matching upper and lower bounds. Our lower bound argument extends to every constant number of passes $p$, and shows that any $p$-pass algorithm for this problem uses $\tilde{\Omega}(n \cdot L^{1/p})$ space. In addition, we show a similar $\tilde{\Theta}(n \cdot \sqrt{L})$ bound on the space complexity of any algorithm (with any number of passes) for the related problem of sampling an $L$-step random walk from every vertex in the graph.


翻译:对于以美元为顶端的正方形 $G$ 和以美元为顶端的顶端 ${u{sff start}$, 我们希望( 大约) 抽样从$u ⁇ sf start} 美元开始, 以最小空间代表最小值代表$G$开始的 $L$级随机行走。 这个问题发现许多应用程序, 例如, 在接近网页的 PageRank 时。 如果只允许一次通过, 问题的空间复杂性显示为$( tilde) $( cdot L) 。 在我们工作之前, 只有在 $\\ {sf start} (sqrt{L} $的基础上, 才能知道一个更好的空间复杂性。 我们解决了这个随机行行走模拟问题的复杂性, 例如, 在双向流算时, 显示它是$\ t\ sqr>。 任何问题, 通过几乎匹配的上下方框 $( $_x_xx%), 我们的下方参数显示每个固定的平面数字 。

0
下载
关闭预览

相关内容

在数学中,随机漫步是一种数学对象,称为随机过程或随机过程,它描述的路径由在某些数学空间(例如整数)上的一系列随机步骤组成。随机行走等是指基于过去的表现,无法预测将来的发展步骤和方向。核心概念是指任何无规则行走者所带的守恒量都各自对应着一个扩散运输定律 ,接近于布朗运动,是布朗运动理想的数学状态,现阶段主要应用于互联网链接分析及金融股票市场中。
专知会员服务
76+阅读 · 2021年3月16日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
122+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
192+阅读 · 2019年10月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月16日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
一份简单《图神经网络》教程,28页ppt
专知会员服务
122+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
192+阅读 · 2019年10月10日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员