The popularity of cyber-physical systems is fueling the rapid growth of location-based services. This poses the risk of location privacy disclosure. Effective privacy preservation is foremost for various mobile applications. Recently, geo-indistinguishability and expected inference error are proposed for limiting location leakages. In this paper, we argue that personalization means regionalization for geo-indistinguishability, and we propose a regionalized location obfuscation mechanism called DPIVE with personalized utility sensitivities. This substantially corrects the differential and distortion privacy problem of PIVE framework proposed by Yu et al. on NDSS 2017. We develop DPIVE with two phases. In Phase I, we determine disjoint sets by partitioning all possible positions such that different locations in the same set share the Protection Location Set (PLS). In Phase II, we construct a probability distribution matrix in which the rows corresponding to the same PLS have their own sensitivity of utility (PLS diameter). Moreover, by designing QK-means algorithm for more search space in 2-D space, we improve DPIVE with refined location partition and present fine-grained personalization, enabling each location to have its own privacy level endowed with a customized privacy budget. Experiments with two public datasets demonstrate that our mechanisms have the superior performance, typically on skewed locations.
翻译:网络物理系统的普及正在推动基于定位服务的快速增长。 这给定位隐私披露带来风险。 有效的隐私保护是各种移动应用中最主要的。 最近, 提出了限制位置渗漏的地理分化和预期推断错误。 在本文件中, 我们主张个性化意味着地理分化的区域化, 地理分化, 我们提出一个区域化的地点模糊机制, 名为DPIVE, 具有个性化实用敏感度。 这大大纠正了 Yu 等人在 NDSS 2017 上提议的 PIVE 框架差异和扭曲的隐私问题。 我们用两个阶段来开发DPVE。 在第一阶段, 我们通过分割所有可能的位置来确定不连接的组合, 这些位置在同一个地点共享了保护位置。 在第二阶段, 我们构建了一个概率分布矩阵, 与同一个 PLS 相对应的行具有自身的实用性( PLS 直径) 。 此外, 通过设计用于在 2D 空间中更多搜索空间的QK 手段算法, 我们用改良的位置分隔和显示精细度的个人化个人化数据, 使每个预算水平都具有定制的高级空间。