We prove that every $n$-vertex $K_t$-minor-free graph $G$ of maximum degree $\Delta$ has a set $F$ of $O(t^2(\log t)^{1/4}\sqrt{\Delta n})$ edges such that every component of $G - F$ has at most $n/2$ vertices. This is best possible up to the dependency on $t$ and extends earlier results of Diks, Djidjev, Sykora, and Vr\v{t}o (1993) for planar graphs, and of Sykora and Vr\v{t}o (1993) for bounded-genus graphs. Our result is a consequence of the following more general result: The line graph of $G$ is isomorphic to a subgraph of the strong product $H \boxtimes K_{\lfloor p \rfloor}$ for some graph $H$ with treewidth at most $t-2$ and $p = \sqrt{(t-3)\Delta |E(G)|} + \Delta$.
翻译:我们证明,每1美元顶端$K_t$t$-minor-finor police $G$(最大度为$Delta$),每张顶端$1/4$sqrt=Delta n}的边缘,每张G$-F$的每张顶端美元最多为0.2美元。这最有可能达到对美元的依赖程度,并延长Diks、Djidjev、Sykora和Vr\v{t}o(1993年)对平面图以及Sykora和Vr\v{t}o(1993年)对捆绑基因图的早期结果。我们的结果是以下更一般的结果:$G$的线形图对强产值$H\boxtimes K ⁇ llop p\rflop}$的子图来说,对于树底值为$2美元和$p=sqrt{D$(t3)\\\\\\\Qelta=D。