This paper presents a closed-form approach to constrain a flow within a given volume and around objects. The flow is guaranteed to converge and to stop at a single fixed point. We show that the obstacle avoidance problem can be inverted to enforce that the flow remains enclosed within a volume defined by a polygonal surface. We formally guarantee that such a flow will never contact the boundaries of the enclosing volume and obstacles, and will asymptotically converge towards an attractor. We further create smooth motion fields around obstacles with edges (e.g. tables). The technique enables a robot to navigate within an enclosed corridor while avoiding static and moving obstacles. It is applied on an autonomous robot (QOLO) in a static complex indoor environment and also tested in simulations with dense crowds.


翻译:本文为限制特定体积和物体周围的流量提供了一种封闭式办法。 保证流量会汇合并停留在一个固定点上。 我们表明,避免障碍的问题可以倒过来, 以强制保证流量仍然被封闭在一个多边形表面界定的体积内。 我们正式保证, 这种流量不会接触附着体积和障碍的边界, 并且会无休止地向吸引器汇合。 我们进一步围绕有边缘( 如表格) 的障碍创造平稳的运动场。 这种技术可以让机器人在封闭走廊内航行, 同时避免静态和移动障碍。 它被应用在静态复杂的室内环境中的自主机器人上, 并与密集的人群进行模拟试验 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
0+阅读 · 2021年7月13日
Arxiv
3+阅读 · 2018年10月11日
VIP会员
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员