Federated learning (FL) and split learning (SL) are two emerging collaborative learning methods that may greatly facilitate ubiquitous intelligence in Internet of Things (IoT). Federated learning enables machine learning (ML) models locally trained using private data to be aggregated into a global model. Split learning allows different portions of an ML model to be collaboratively trained on different workers in a learning framework. Federated learning and split learning, each has unique advantages and respective limitations, may complement each other toward ubiquitous intelligence in IoT. Therefore, combination of federated learning and split learning recently became an active research area attracting extensive interest. In this article, we review the latest developments in federated learning and split learning and present a survey on the state-of-the-art technologies for combining these two learning methods in an edge computing-based IoT environment. We also identify some open problems and discuss possible directions for future research in this area with a hope to further arouse the research community's interest in this emerging field.
翻译:联邦学习(FL)和分化学习(SL)是两种新出现的协作学习方法,可以极大地促进物联网(IoT)中无处不在的智能。 联邦学习使利用私人数据在当地培训的机器学习(ML)模式能够将利用私人数据汇总成一个全球模式。 分化学习可以使ML模式的不同部分在学习框架内对不同工人进行协作培训。 联邦学习和分解学习各自具有独特的优势和各自的局限性,可以对IoT中无处不在的智能进行互补。 因此,联合学习和分解学习最近成为引起广泛兴趣的积极研究领域。 在文章中,我们审查了在联邦学习和分解学习方面的最新动态,并介绍了将这两种学习方法结合到边际计算机化的IoT环境中的最新技术。 我们还确定了一些公开的问题,并讨论了该领域未来研究的可能方向,希望进一步激发研究界对这一新兴领域的兴趣。