With the increasing scale and diversification of interaction behaviors in E-commerce, more and more researchers pay attention to multi-behavior recommender systems which utilize interaction data of other auxiliary behaviors. However, all existing models ignore two kinds of intrinsic heterogeneity which are helpful to capture the difference of user preferences and the difference of item attributes. First (intra-heterogeneity), each user has multiple social identities with otherness, and these different identities can result in quite different interaction preferences. Second (inter-heterogeneity), each item can transfer an item-specific percentage of score from low-level behavior to high-level behavior for the gradual relationship among multiple behaviors. Thus, the lack of consideration of these heterogeneities damages recommendation rank performance. To model the above heterogeneities, we propose a novel method named intra- and inter-heterogeneity recommendation model (ARGO). Specifically, we embed each user into multiple vectors representing the user's identities, and the maximum of identity scores indicates the interaction preference. Besides, we regard the item-specific transition percentage as trainable transition probability between different behaviors. Extensive experiments on two real-world datasets show that ARGO performs much better than the state-of-the-art in multi-behavior scenarios.
翻译:随着电子商务互动行为的规模和多样化,越来越多的研究人员关注利用其他辅助行为互动数据的多行为推荐人系统。然而,所有现有模型都忽略了两种固有的异质性,它们有助于捕捉用户偏好的差异和项目属性的差异。首先(异质性),每个用户具有多种社会特征和其他特征,这些不同身份可能导致相当不同的互动偏好。第二(异质性),每个项目都可以将一个特定项目的百分比从低级行为转到高层行为中,以了解多种行为之间的渐进关系。因此,不考虑这些异质性会损害建议的等级性能。对于上述差异性能模型,我们提出了一种名为内部和异质性建议模式的新颖方法。具体地说,我们把每个用户嵌入代表用户身份的多个矢量,以及最大身份分数表明互动偏好。此外,我们认为,具体项目转换的百分比是不同行为之间可培训的风险转换概率。对于不同行为来说,在两种不同的全球中,我们提出了一种叫得更好的数据。