The lattice Boltzmann method (LBM) for the variable-coefficient forced Burgers equation (vc-FBE) is studied by choosing the equilibrium distribution and compensatory functions properly. In our model, the vc-FBE is correctly recovered via the Chapman-Enskog analysis. We numerically investigate the dynamic characteristics of solitons caused by the dispersive and external-force terms. Four numerical examples are given, which align well with the theoretical solutions. Our research proves that LBM is a satisfactory and efficient method for nonlinear evolution equations with variable coefficients.
翻译:通过正确选择平衡分布和补偿功能,研究可变相相增效的强制汉堡方程式(vc-FBE)的拉蒂斯·博尔茨曼法(LBM)。在我们的模式中, vc-FBE通过查普曼-Enskog分析正确回收。我们用数字调查分散和外部力条件引起的索尔的动态特性。提供了四个数字例子,这些例子与理论解决办法非常吻合。我们的研究证明,LBM是使用可变系数的非线性进化方程式的一种令人满意和有效的方法。