Few-shot class-incremental learning (FSCIL) aims to incrementally fine-tune a model trained on base classes for a novel set of classes using a few examples without forgetting the previous training. Recent efforts of FSCIL address this problem primarily on 2D image data. However, due to the advancement of camera technology, 3D point cloud data has become more available than ever, which warrants considering FSCIL on 3D data. In this paper, we address FSCIL in the 3D domain. In addition to well-known problems of catastrophic forgetting of past knowledge and overfitting of few-shot data, 3D FSCIL can bring newer challenges. For example, base classes may contain many synthetic instances in a realistic scenario. In contrast, only a few real-scanned samples (from RGBD sensors) of novel classes are available in incremental steps. Due to the data variation from synthetic to real, FSCIL endures additional challenges, degrading performance in later incremental steps. We attempt to solve this problem by using Microshapes (orthogonal basis vectors) describing any 3D objects using a pre-defined set of rules. It supports incremental training with few-shot examples minimizing synthetic to real data variation. We propose new test protocols for 3D FSCIL using popular synthetic datasets, ModelNet and ShapeNet, and 3D real-scanned datasets, ScanObjectNN, and Common Objects in 3D (CO3D). By comparing state-of-the-art methods, we establish the effectiveness of our approach in the 3D domain.
翻译:少见的班级强化学习(FSCIL)旨在利用几个例子,逐步微调一套新型班级基础班所培训的模型,同时不忘以前的训练。FSCIL最近的努力主要在2D图像数据上解决这一问题。然而,由于摄像技术的进步,3D点云数据比以往更加容易获得,这需要在3D数据上考虑FSCIL。在本文中,我们在3D域处理FSCIL(FSCIL)问题。除了在基础班上使用几个例子对一些新型班级进行基础班级培训之外,3D还可以带来更新的挑战。例如,基础班在现实的情景中可能包含许多合成实例。相比之下,只有少量真实的样板(来自 RGBD 传感器)可以以渐进步骤获得。由于从合成到真实的数据变化,FSCIL(FSI)承受了额外的挑战,在后来的渐进步骤中降低了业绩。我们试图通过Microshape(ortoal)方法(orphical) 来解决这个问题。我们试图通过对3D(我们共同的州级)来描述任何3D对象,用预的域,用Scial-Net规则进行对比,用Seralal-rod 3D(我们定义的校验算) 3D)来支持对实时方法,用新的模型数据进行渐进式的模型数据化数据化数据化数据模型的模型来进行渐进式培训。它支持在SLILLLFSD) 3SD 建立新的数据变。它用新的模型来提供一些渐进式的模型,用新的数据,用新的模型来建立。它用新的模型来建立新的模型来建立。它用新的测试式的模型来建立新的模型来建立。它用新的模型,用新的模型,用新的模型来建立。用新的模型来建立。