Digital sources are more prevalent than ever but effectively using them can be challenging. One core challenge is that digitized sources are often distributed, thus forcing researchers to spend time collecting, interpreting, and aligning different sources. A knowledge graph can accelerate research by providing a single connected source of truth that humans and machines can query. During two design-test cycles, we convert four data sets from the historical maritime domain into a knowledge graph. The focus during these cycles is on creating a sustainable and usable approach that can be adopted in other linked data conversion efforts. Furthermore, our knowledge graph is available for maritime historians and other interested users to investigate the daily business of the Dutch East India Company through a unified portal.


翻译:数字来源比以往更加普遍,但有效使用它们可能具有挑战性。一个核心挑战是,数字化来源经常被分配,迫使研究人员花时间收集、解释和调整不同来源。一个知识图可以通过提供人类和机器可以查询的单一的、相互联系的真相来源来加速研究。在两个设计-测试周期中,我们将历史海洋领域的四套数据转换成一个知识图。这些周期的重点是创造可持续和可用的方法,可用于其他联接的数据转换工作。此外,我们的知识图可供海洋历史学家和其他感兴趣的用户使用,通过一个统一的门户调查荷兰东印度公司的日常业务。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2021年9月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Arxiv
101+阅读 · 2020年3月4日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2021年9月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Top
微信扫码咨询专知VIP会员