Maximal extractable value (MEV) in which block proposers unethically gain profits by manipulating the order in which transactions are included within a block, is a key challenge facing blockchains such as Ethereum today. Left unchecked, MEV can lead to a centralization of stake distribution thereby ultimately compromising the security of blockchain consensus. To preserve proposer decentralization (and hence security) of the blockchain, Ethereum has advocated for a proposer-builder separation (PBS) in which the functionality of transaction ordering is separated from proposers and assigned to separate entities called builders. Builders accept transaction bundles from searchers, who compete to find the most profitable bundles. Builders then bid completed blocks to proposers, who accept the most profitable blocks for publication. The auction mechanisms used between searchers, builders and proposers are crucial to the overall health of the blockchain. In this paper, we consider PBS design in Ethereum as a game between searchers, builders and proposers. A key novelty in our design is the inclusion of future block proposers, as all proposers of an epoch are decided ahead of time in proof-of-stake (PoS) Ethereum within the game model. Our analysis shows the existence of alternative auction mechanisms that result in a better (more profitable) equilibrium to players compared to state-of-the-art. Experimental evaluations based on synthetic and real-world data traces corroborate the analysis. Our results highlight that a rethinking of auction mechanism designs is necessary in PoS Ethereum to prevent disruption.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员