Accessible machine learning algorithms, software, and diagnostic tools for energy-efficient devices and systems are extremely valuable across a broad range of application domains. In scientific domains, real-time near-sensor processing can drastically improve experimental design and accelerate scientific discoveries. To support domain scientists, we have developed hls4ml, an open-source software-hardware codesign workflow to interpret and translate machine learning algorithms for implementation with both FPGA and ASIC technologies. We expand on previous hls4ml work by extending capabilities and techniques towards low-power implementations and increased usability: new Python APIs, quantization-aware pruning, end-to-end FPGA workflows, long pipeline kernels for low power, and new device backends include an ASIC workflow. Taken together, these and continued efforts in hls4ml will arm a new generation of domain scientists with accessible, efficient, and powerful tools for machine-learning-accelerated discovery.
翻译:在科学领域,实时近距离传感器处理可以极大地改进实验设计并加速科学发现。为了支持领域科学家,我们开发了Hls4ml,这是一个开放源码软件硬件编码流程,用于解释和翻译机器学习算法,以便利用FPGA和ACIC技术加以实施。我们扩大了以往的hls4ml工作,将能力和技术推广到低功率实施和提高可用性:新的Python APIs、夸大性-觉悟运行、端到端的FPGA工作流程、低功率的长管内核、新设备后端包括ASIC工作流程。加在一起,Hls4ml的这些和持续的努力将支持新一代的域科学家,他们拥有方便、高效和强大的机械学习加速发现工具。