Metric Interval Temporal Logic (MITL) is a well studied real-time, temporal logic that has decidable satisfiability and model checking problems. The decision procedures for MITL rely on the automata theoretic approach, where logic formulas are translated into equivalent timed automata. Since timed automata are not closed under complementation, decision procedures for MITL first convert a formula into negated normal form before translating to a timed automaton. We show that, unfortunately, these 20-year-old procedures are incorrect, because they rely on an incorrect semantics of the R operator. We present the right semantics of R and give new, correct decision procedures for MITL. We show that both satisfiability and model checking for MITL are EXPSPACE-complete, as was previously claimed. We also identify a fragment of MITL that we call MITL_{WI} that is richer than MITL_{0,\infty}, for which we show that both satisfiability and model checking are PSPACE-complete. Many of our results have been formally proved in PVS.
翻译:时间跨时间逻辑( MITL) 是经过周密研究的实时、时间逻辑, 具有可分解的参数和模型检查问题。 MITL 的决定程序依赖于自动磁共振法, 逻辑公式可以转换为等效的自动磁共振法。 由于时间自动磁共振没有在补充中关闭, MITL 的决定程序首先将公式转换成否定的正常格式, 然后转换成定时自动磁共振。 我们发现, 不幸的是, 这20年的程序是不正确的, 因为它们依赖于 R 操作员的不正确的语义。 我们展示了 R 正确的语义, 给 MITL 提供了新的、 正确的决定程序。 我们显示, 用于 MITL 的参数和模型检查模型都已完成了 ExPSPACECE 。 我们还确定了 MITL 的碎片, 我们称之为 MITL {WI} 的碎片比 MITL ⁇ 0,\ intfty}, 因为它的参数和模型检查都显示是PESACE 的完整。 我们的许多结果已经在PVS 中得到了正式证明 。