Current embedded systems are specifically designed to run multimedia applications. These applications have a big impact on both performance and energy consumption. Both metrics can be optimized selecting the best cache configuration for a target set of applications. Multi-objective optimization may help to minimize both conflicting metrics in an independent manner. In this work, we propose an optimization method that based on Multi-Objective Evolutionary Algorithms, is able to find the best cache configuration for a given set of applications. To evaluate the goodness of candidate solutions, the execution of the optimization algorithm is combined with a static profiling methodology using several well-known simulation tools. Results show that our optimization framework is able to obtain an optimized cache for Mediabench applications. Compared to a baseline cache memory, our design method reaches an average improvement of 64.43\% and 91.69\% in execution time and energy consumption, respectively.
翻译:目前嵌入系统是专门设计用于运行多媒体应用程序的。这些应用程序对性能和能源消耗都有重大影响。两种标准都可以优化地选择目标应用程序集的最佳缓存配置。 多目标优化可以帮助独立地将相互矛盾的两种度量最小化。在这项工作中,我们提出了一个优化方法,该方法以多目标进化算法为基础,能够找到一套特定应用程序的最佳缓存配置。为了评估候选解决方案的优劣性,应用优化算法与使用若干众所周知的模拟工具的静态剖析法相结合。结果显示,我们的优化框架能够为Mediabench应用程序获得最佳缓存。与基线缓存存储相比,我们的设计方法在时间和能源消耗方面分别实现了64.43 ⁇ 和91.69 ⁇ 的平均改进。