Deep hiding, embedding images into another using deep neural networks, has shown its great power in increasing the message capacity and robustness. In this paper, we conduct an in-depth study of state-of-the-art deep hiding schemes and analyze their hidden vulnerabilities. Then, according to our observations and analysis, we propose a novel ProvablE rEmovaL attack (PEEL) using image inpainting to remove secret images from containers without any prior knowledge about the deep hiding scheme. We also propose a systemic methodology to improve the efficiency and image quality of PEEL by carefully designing a removal strategy and fully utilizing the visual information of containers. Extensive evaluations show our attacks can completely remove secret images and has negligible impact on the quality of containers.
翻译:利用深层神经网络将图像嵌入另一个深层神经网络的深处隐藏在另一个深层神经网络中,显示了其巨大的力量,提高了信息容量和稳健性;在本文中,我们深入研究了最先进的深层隐藏计划并分析了其隐蔽的脆弱性;然后,根据我们的观察和分析,我们提出了一个新的ProvablE r EmovaL(PEEL)攻击(PEEL)方案,利用图像涂鸦将秘密图像从容器中去除,而事先不知晓深层隐藏计划;我们还提出了一个系统性方法,通过仔细设计清除战略和充分利用容器的视觉信息,提高PEEL的效率和图像质量;广泛的评估表明,我们的攻击可以完全清除秘密图像,对容器的质量影响微乎其微。