Delivering malware covertly and evasively is critical to advanced malware campaigns. In this paper, we present a new method to covertly and evasively deliver malware through a neural network model. Neural network models are poorly explainable and have a good generalization ability. By embedding malware in neurons, the malware can be delivered covertly, with minor or no impact on the performance of neural network. Meanwhile, because the structure of the neural network model remains unchanged, it can pass the security scan of antivirus engines. Experiments show that 36.9MB of malware can be embedded in a 178MB-AlexNet model within 1% accuracy loss, and no suspicion is raised by anti-virus engines in VirusTotal, which verifies the feasibility of this method. With the widespread application of artificial intelligence, utilizing neural networks for attacks becomes a forwarding trend. We hope this work can provide a reference scenario for the defense on neural network-assisted attacks.
翻译:以隐蔽和隐蔽的方式投送恶意软件对于推进恶意软件运动至关重要。 在本文中, 我们提出了一个通过神经网络模型秘密和隐蔽地发送恶意软件的新方法。 神经网络模型解释不清, 并且具有很好的概括能力。 通过将恶意软件嵌入神经系统, 恶意软件可以隐蔽地发送, 对神经网络的性能有轻微影响或没有影响。 同时, 由于神经网络模型的结构没有改变, 它可以通过抗病毒引擎的安全扫描。 实验显示, 恶意软件的36.9MB 可以嵌入178MB- ALexNet模型中, 精度损失为1 %, 病毒网络的反病毒引擎不会引起怀疑, 从而验证这一方法的可行性。 随着人工智能的广泛应用, 攻击使用神经网络成为了一种预发趋势。 我们希望这项工作可以为神经网络辅助攻击的防御提供参考情景。