The $\ell_p$-norm objectives for correlation clustering present a fundamental trade-off between minimizing total disagreements (the $\ell_1$-norm) and ensuring fairness to individual nodes (the $\ell_\infty$-norm). Surprisingly, in the offline setting it is possible to simultaneously approximate all $\ell_p$-norms with a single clustering. Can this powerful guarantee be achieved in an online setting? This paper provides the first affirmative answer. We present a single algorithm for the online-with-a-sample (AOS) model that, given a small constant fraction of the input as a sample, produces one clustering that is simultaneously $O(\log^4 n)$-competitive for all $\ell_p$-norms with high probability, $O(\log n)$-competitive for the $\ell_\infty$-norm with high probability, and $O(1)$-competitive for the $\ell_1$-norm in expectation. This work successfully translates the offline "all-norms" guarantee to the online world. Our setting is motivated by a new hardness result that demonstrates a fundamental separation between these objectives in the standard random-order (RO) online model. Namely, while the $\ell_1$-norm is trivially $O(1)$-approximable in the RO model, we prove that any algorithm in the RO model for the fairness-promoting $\ell_\infty$-norm must have a competitive ratio of at least $\Omega(n^{1/3})$. This highlights the necessity of a different beyond-worst-case model. We complement our algorithm with lower bounds, showing our competitive ratios for the $\ell_1$- and $\ell_\infty$- norms are nearly tight in the AOS model.
翻译:相关性聚类的 $\ell_p$ 范数目标在最小化总分歧($\ell_1$ 范数)与保证对单个节点的公平性($\ell_\infty$ 范数)之间呈现一种根本性的权衡。令人惊讶的是,在离线设置中,可以通过单一聚类同时近似所有 $\ell_p$ 范数。这种强大的保证能否在在线设置中实现?本文首次给出了肯定的答案。我们提出了一种适用于带样本在线(AOS)模型的单一算法,该算法在给定一小部分恒定比例的输入作为样本的情况下,能够以高概率生成一个同时对所有 $\ell_p$ 范数具有 $O(\log^4 n)$ 竞争比的聚类,以高概率对 $\ell_\infty$ 范数具有 $O(\log n)$ 竞争比,并以期望对 $\ell_1$ 范数具有 $O(1)$ 竞争比。这项工作成功地将离线的“全范数”保证转化到了在线世界。我们的研究动机源于一项新的硬度结果,该结果揭示了在标准随机顺序(RO)在线模型中这些目标之间存在根本性分离。具体而言,尽管 $\ell_1$ 范数在 RO 模型中可平凡地实现 $O(1)$ 近似,但我们证明,在 RO 模型中任何用于促进公平性的 $\ell_\infty$ 范数的算法,其竞争比至少为 $\Omega(n^{1/3})$。这凸显了采用一种不同的超越最坏情况模型的必要性。我们通过下界结果补充了我们的算法,表明我们在 AOS 模型中对 $\ell_1$ 范数和 $\ell_\infty$ 范数所达到的竞争比几乎是紧的。