Incremental Structure from Motion (ISfM) has been widely used for UAV image orientation. Its efficiency, however, decreases dramatically due to the sequential constraint. Although the divide-and-conquer strategy has been utilized for efficiency improvement, cluster merging becomes difficult or depends on seriously designed overlap structures. This paper proposes an algorithm to extract the global model for cluster merging and designs a parallel SfM solution to achieve efficient and accurate UAV image orientation. First, based on vocabulary tree retrieval, match pairs are selected to construct an undirected weighted match graph, whose edge weights are calculated by considering both the number and distribution of feature matches. Second, an algorithm, termed weighted connected dominating set (WCDS), is designed to achieve the simplification of the match graph and build the global model, which incorporates the edge weight in the graph node selection and enables the successful reconstruction of the global model. Third, the match graph is simultaneously divided into compact and non-overlapped clusters. After the parallel reconstruction, cluster merging is conducted with the aid of common 3D points between the global and cluster models. Finally, by using three UAV datasets that are captured by classical oblique and recent optimized views photogrammetry, the validation of the proposed solution is verified through comprehensive analysis and comparison. The experimental results demonstrate that the proposed parallel SfM can achieve 17.4 times efficiency improvement and comparative orientation accuracy. In absolute BA, the geo-referencing accuracy is approximately 2.0 and 3.0 times the GSD (Ground Sampling Distance) value in the horizontal and vertical directions, respectively. For parallel SfM, the proposed solution is a more reliable alternative.
翻译:从UAV(ISfM)的递增结构动作(ISfM) 被广泛用于UAV图像定向,但其效率却因相继限制而大幅下降。虽然为了提高效率而使用了分数和交错战略(WCDS),但集成合并变得困难,或取决于认真设计的重叠结构。本文提出一种算法,以提取分组合并的全球模式,并设计一个平行的SfM解决方案,以实现高效和准确的 UAV图像定向。首先,根据词汇树检索,选择配对以构建一个非方向的加权匹配图,其边边比因地势匹配的数量和分布而计算。第二,一个算法,称为加权连接的垂直方向(WCDSDS),旨在简化匹配图的精度和构建全球模型,该模型在图形节点选择中包含边际的权重,同时将匹配图分为紧凑和非重叠的群集。在平行的重建后,通过全球和集群模型模型之间的共同的3D点来进行组合合并。最后,利用三个UAVD数据集,由经典的精确直径直径直径直径直方向来测量的计算。SM的精确度分析可以分别进行拟议的S-17的精确度分析,通过S-imalvial-imalimalimalimalimalimalalalalalalalalimalimmalimalimalimalimalimalmas 。通过S-