Often the underlying system of differential equations driving a stochastic dynamical system is assumed to be known, with inference conditioned on this assumption. We present a Bayesian framework for discovering this system of differential equations under assumptions that align with real-life scenarios, including the availability of relatively sparse data. Further, we discuss computational strategies that are critical in teasing out the important details about the dynamical system and algorithmic innovations to solve for acute parameter interdependence in the absence of rich data. This gives a complete Bayesian pathway for model identification via a variable selection paradigm and parameter estimation of the corresponding model using only the observed data. We present detailed computations and analysis of the Lorenz-96, Lorenz-63, and the Orstein-Uhlenbeck system using the Bayesian framework we propose.
翻译:通常假定人们知道驱动一个随机动态系统的不同方程式的基本系统,其推论以这一假设为条件。我们提出了一个贝叶斯框架,用于在符合现实情景的假设下发现这一差异方程式系统,包括提供相对稀少的数据。此外,我们讨论了在缺乏丰富数据的情况下,利用动态系统和算法创新的重要细节解决急性参数相互依存的重要细节时至关重要的计算战略。这提供了完整的巴伊西亚路径,通过可变选择模式和参数估计,仅使用观察到的数据,通过相应模型的变量选择模式和参数进行模型识别。我们用我们提议的巴伊西亚框架,对Lorenz-96、Lorenz-63和Orstein-Uhlenbeck系统进行了详细的计算和分析。