In this paper, we design secure multi-party computation (MPC) protocols in the asynchronous communication setting with optimal resilience. Our protocols are secure against a computationally-unbounded malicious adversary, characterized by an adversary structure $\mathcal{Z}$, which enumerates all possible subsets of potentially corrupt parties. Our protocols incur a communication of $\mathcal{O}(|\mathcal{Z}|^2)$ and $\mathcal{O}(|\mathcal{Z}|)$ bits per multiplication for perfect and statistical security respectively. These are the first protocols with this communication complexity, as such protocols were known only in the synchronous communication setting (Hirt and Tschudi, ASIACRYPT 2013).
翻译:在本文中,我们设计了安全多方计算(MPC)协议,在非同步通信设置中具有最佳的弹性。我们的协议是针对一个不受计算约束的恶意对手的,其特征是:以负数结构$\mathcal_$为特征,列出了所有可能的腐败方子集。我们的协议产生了一个$\mathcal{O}( ⁇ mathcal_%2)美元和$\mathcal{O}( ⁇ mathcal}}}( ⁇ cal_}) 美元乘数,分别用于完善和统计安全。这些是通信复杂性的第一个协议,因为这种协议只在同步通信环境中才知道(Hirt和Tschudi,ASIACRYPT,2013)。