We study the problem of fair and efficient allocation of a set of indivisible chores to agents with additive cost functions. We consider the popular fairness notion of envy-freeness up to one good (EF1) with the efficiency notion of Pareto-optimality (PO). While it is known that an EF1+PO allocation exists and can be computed in pseudo-polynomial time in the case of goods, the same problem is open for chores. Our first result is a strongly polynomial-time algorithm for computing an EF1+PO allocation for bivalued instances, where agents have (at most) two disutility values for the chores. To the best of our knowledge, this is the first non-trivial class of indivisible chores to admit an EF1+PO allocation and an efficient algorithm for its computation. We also study the problem of computing an envy-free (EF) and PO allocation for the case of divisible chores. While the existence of an EF+PO allocation is known via competitive equilibrium with equal incomes, its efficient computation is open. Our second result shows that for bivalued instances, an EF+PO allocation can be computed in strongly polynomial-time.
翻译:我们研究的是向具有累加成本功能的代理商公平和高效地分配一套不可分割的杂务的问题。我们考虑到以Pareto-最佳效率(PO)为效率概念的 " 无妒忌至一种商品 " (EF1)的流行公平概念(EF1)和 " 无妒忌至一种商品 " (EF1+PO),虽然已知EF1+PO的分配存在,而且可以用假阴极时间来计算,但同样的杂务问题也存在。我们的第一个结果是计算双值情况下的EF1+PO分配,计算双值情况下的EF1+PO分配,其中代理者(大多数)有两种闲暇价值。据我们所知,这是第一个非三重的不可分割的杂务类别,即接受EF1+PO的分配及其计算的有效算法。我们还研究如何计算一种无妒忌(EF)和PO分配的杂务问题。虽然EF+PO的分配是通过竞争性的平衡来知道的,但其有效计算是公开的。我们的第二个结果显示,对于两重估的事例而言,EFEF+PO分配可以强烈地计算。