The performance of a deep neural network (DNN) for fault diagnosis is very much dependent on the network architecture. Also, the diagnostic performance is reduced if the model trained on a laboratory case machine is used on a test dataset from an industrial machine running under variable operating conditions. Thus there are two challenges for the intelligent fault diagnosis of industrial machines: (i) selection of suitable DNN architecture and (ii) domain adaptation for the change in operating conditions. Therefore, we propose an evolutionary Net2Net transformation (EvoNet2Net) that finds the best suitable DNN architecture for the given dataset. Nondominated sorting genetic algorithm II has been used to optimize the depth and width of the DNN architecture. We have formulated a transfer learning-based fitness evaluation scheme for faster evolution. It uses the concept of domain adaptation for quick learning of the data pattern in the target domain. Also, we have introduced a hybrid crossover technique for optimization of the depth and width of the deep neural network encoded in a chromosome. We have used the Case Western Reserve University dataset and Paderborn university dataset to demonstrate the effectiveness of the proposed framework for the selection of the best suitable architecture capable of excellent diagnostic performance, classification accuracy almost up to 100\%.


翻译:深度神经网络(DNN)的性能在很大程度上取决于网络结构。此外,如果在可变操作条件下运行的工业机器在测试数据集中使用实验室案例机器培训模型,则诊断性性能就会降低。因此,对工业机器进行智能错误诊断存在两个挑战:(一) 选择合适的DNN结构,(二) 针对操作条件的变化进行域适应。因此,我们建议进行进化式的Net2Net网络转换(EvoNet2Net2Net),找到最适合给定数据集的 DNN结构。使用非主要基因分类算法二来优化DNN结构的深度和宽度。我们制定了基于学习的健身评估计划,以便更快地演进。它利用域适应概念快速学习目标领域的数据模式。此外,我们采用了一种混合交叉技术,以优化在染色体中编码的深神经网络的深度和宽度。我们使用了Case Western储备大学数据集和Paderborn大学数据集,以展示拟议框架的有效性,以便选择几乎能够精确进行最佳诊断的架构。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
9+阅读 · 2021年10月5日
Arxiv
12+阅读 · 2019年3月14日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
4+阅读 · 2015年3月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员