We study (Euclidean) $k$-median and $k$-means with constraints in the streaming model. There have been recent efforts to design unified algorithms to solve constrained $k$-means problems without using knowledge of the specific constraint at hand aside from mild assumptions like the polynomial computability of feasibility under the constraint (compute if a clustering satisfies the constraint) or the presence of an efficient assignment oracle (given a set of centers, produce an optimal assignment of points to the centers which satisfies the constraint). These algorithms have a running time exponential in $k$, but can be applied to a wide range of constraints. We demonstrate that a technique proposed in 2019 for solving a specific constrained streaming $k$-means problem, namely fair $k$-means clustering, actually implies streaming algorithms for all these constraints. These work for low dimensional Euclidean space. [Note that there are more algorithms for streaming fair $k$-means today, in particular they exist for high dimensional spaces now as well.]


翻译:我们研究的是(欧元)中值和美元中值手段,这些手段在流模式中受到限制。最近,我们努力设计统一的算法,以解决受限制的美元手段问题,而没有使用手边特定限制因素的知识,而没有使用温和的假设,例如受限制(如果集群满足了限制因素,则计算一个组合)下可行性的多元比较性比较性,或者存在高效的指定符(给一套中心提供一套中心,产生符合限制条件的点的最佳分配)。这些算法以美元为时速运行,但可以应用于广泛的限制。我们证明,2019年提出的一种解决具体受限制的美元手段问题的方法,即公平的美元手段组合,实际上意味着所有这些限制因素的流算法。这些用于低维度的欧几里德空间的工作。 [注意今天流出公平美元手段的算法更多,特别是现在高维空间的算法。 ]

0
下载
关闭预览

相关内容

MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月10日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
7+阅读 · 2020年8月7日
VIP会员
相关VIP内容
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员