We study (Euclidean) $k$-median and $k$-means with constraints in the streaming model. There have been recent efforts to design unified algorithms to solve constrained $k$-means problems without using knowledge of the specific constraint at hand aside from mild assumptions like the polynomial computability of feasibility under the constraint (compute if a clustering satisfies the constraint) or the presence of an efficient assignment oracle (given a set of centers, produce an optimal assignment of points to the centers which satisfies the constraint). These algorithms have a running time exponential in $k$, but can be applied to a wide range of constraints. We demonstrate that a technique proposed in 2019 for solving a specific constrained streaming $k$-means problem, namely fair $k$-means clustering, actually implies streaming algorithms for all these constraints. These work for low dimensional Euclidean space. [Note that there are more algorithms for streaming fair $k$-means today, in particular they exist for high dimensional spaces now as well.]
翻译:我们研究的是(欧元)中值和美元中值手段,这些手段在流模式中受到限制。最近,我们努力设计统一的算法,以解决受限制的美元手段问题,而没有使用手边特定限制因素的知识,而没有使用温和的假设,例如受限制(如果集群满足了限制因素,则计算一个组合)下可行性的多元比较性比较性,或者存在高效的指定符(给一套中心提供一套中心,产生符合限制条件的点的最佳分配)。这些算法以美元为时速运行,但可以应用于广泛的限制。我们证明,2019年提出的一种解决具体受限制的美元手段问题的方法,即公平的美元手段组合,实际上意味着所有这些限制因素的流算法。这些用于低维度的欧几里德空间的工作。 [注意今天流出公平美元手段的算法更多,特别是现在高维空间的算法。 ]