Complex network analyses have provided clues to improve power-grid stability with the help of numerical models. The high computational cost of numerical simulations, however, has inhibited the approach, especially when it deals with the dynamic properties of power grids such as frequency synchronization. In this study, we investigate machine learning techniques to estimate the stability of power-grid synchronization. We test three different machine learning algorithms -- random forest, support vector machine, and artificial neural network -- training them with two different types of synthetic power grids consisting of homogeneous and heterogeneous input-power distribution, respectively. We find that the three machine learning models better predict the synchronization stability of power-grid nodes when they are trained with the heterogeneous input-power distribution than the homogeneous one. With the real-world power grids of Great Britain, Spain, France, and Germany, we also demonstrate that the machine learning algorithms trained on synthetic power grids are transferable to the stability prediction of the real-world power grids, which implies the prospective applicability of machine learning techniques on power-grid studies.
翻译:复杂的网络分析为在数字模型的帮助下改善电网稳定性提供了线索。 然而,数字模拟的计算成本高昂阻碍了这种方法,特别是当它涉及电网的动态特性时,例如频率同步。在这个研究中,我们研究了机器学习技术,以估计电网同步的稳定性。我们测试了三种不同的机器学习算法 -- -- 随机森林、辅助矢量机和人工神经网络 -- -- 训练它们使用两种不同的合成电网,这两类合成电网分别包括同质和异质的输入功率分布。我们发现三个机器学习模型更好地预测了电网节点的同步稳定性,当它们经过与同质的输入功率分布不同的训练时。在大不列颠、西班牙、法国和德国的实世电网中,我们还证明在合成电网上培训的机器学习算法可以用于真实世界电网的稳定预测,这意味着机器学习技术在电网研究上的潜在适用性。