We study the continuous multi-reference alignment model of estimating a periodic function on the circle from noisy and circularly-rotated observations. Motivated by analogous high-dimensional problems that arise in cryo-electron microscopy, we establish minimax rates for estimating generic signals that are explicit in the dimension $K$. In a high-noise regime with noise variance $\sigma^2 \gtrsim K$, for signals with Fourier coefficients of roughly uniform magnitude, the rate scales as $\sigma^6$ and has no further dependence on the dimension. This rate is achieved by a bispectrum inversion procedure, and our analyses provide new stability bounds for bispectrum inversion that may be of independent interest. In a low-noise regime where $\sigma^2 \lesssim K/\log K$, the rate scales instead as $K\sigma^2$, and we establish this rate by a sharp analysis of the maximum likelihood estimator that marginalizes over latent rotations. A complementary lower bound that interpolates between these two regimes is obtained using Assouad's hypercube lemma. We extend these analyses also to signals whose Fourier coefficients have a slow power law decay.
翻译:暂无翻译