Recent advancements in remote sensing technology and the increasing size of satellite constellations allows massive geophysical information to be gathered daily on a global scale by numerous platforms of different fidelity. The auto-regressive co-kriging model is a suitable framework to analyse such data sets because it accounts for cross-dependencies among different fidelity satellite outputs. However, its implementation in multifidelity large spatial data-sets is practically infeasible because its computational complexity increases cubically with the total number of observations. In this paper, we propose a nearest neighbour co-kriging Gaussian process that couples the auto-regressive model and nearest neighbour GP by using augmentation ideas; reducing the computational complexity to be linear with the total number of spatial observed locations. The latent process of the nearest neighbour GP is augmented in a manner which allows the specification of semi-conjugate priors. This facilitates the design of an efficient MCMC sampler involving mostly direct sampling updates which can be implemented in parallel computational environments. The good predictive performance of the proposed method is demonstrated in a simulation study. We use the proposed method to analyze High-resolution Infrared Radiation Sounder data gathered from two NOAA polar orbiting satellites.
翻译:最近遥感技术的进步和卫星星座规模的扩大使得全球范围的众多忠实平台每天收集大量地球物理信息。自动递减共重力模型是分析这类数据集的适当框架,因为它考虑到不同忠实卫星产出之间的交叉依赖性。然而,在多信仰大型空间数据集中的应用实际上不可行,因为其计算复杂性随着观测总量的增加而相继增加。在本文中,我们提议使用扩增构想,将自动递增模型和近邻GP相结合,以近邻共同重整高萨进程;降低计算复杂性,使之与空间观测地点总数线性地联系起来。近邻GP的潜在过程正在扩大,以便能够对半一致前期进行规范。这有利于设计高效的MCMC取样器,其中主要包括可在平行计算环境中进行的直接抽样更新。在模拟研究中演示了拟议方法的良好预测性表现。我们从两个模拟研究中收集了极地轨道A高分辨率卫星。我们用拟议的方法来分析高分辨率卫星。