The (unweighted) \emph{tree edit distance} problem for $n$ node trees asks to compute a measure of dissimilarity between two rooted trees with node labels. The current best algorithm from more than a decade ago runs in $O(n ^ 3)$ time [Demaine, Mozes, Rossman, and Weimann, ICALP 2007]. The same paper also showed that $O(n ^ 3)$ is the best possible running time for any algorithm using the so-called \emph{decomposition strategy}, which underlies almost all the known algorithms for this problem. These algorithms would also work for the \emph{weighted} tree edit distance problem, which cannot be solved in truly sub-cubic time under the APSP conjecture [Bringmann, Gawrychowski, Mozes, and Weimann, SODA 2018]. In this paper, we break the cubic barrier by showing an $O(n ^ {2.9546})$ time algorithm for the \emph{unweighted} tree edit distance problem. We consider an equivalent maximization problem and use a dynamic programming scheme involving matrices with many special properties. By using a decomposition scheme as well as several combinatorial techniques, we reduce tree edit distance to the max-plus product of bounded-difference matrices, which can be solved in truly sub-cubic time [Bringmann, Grandoni, Saha, and Vassilevska Williams, FOCS 2016].


翻译:$n 节点树的问题( 未加权) \ emph{ tree 编辑距离 ) 。 美元节点树的问题要求计算两个有节点标签的根树之间差异的尺度。 目前十多年前的最佳算法在$O( n ) 3 美元的时间里运行。 同一文件还显示 $O( n ) 3 美元是使用所谓的 emph{ decomposition 战略 来计算任何算法的最佳运行时间。 这些算法几乎是这个问题所有已知的算法的基础。 这些算法还将为 \ emph{ 重量} 树编辑距离问题发挥作用, 而在 APSP 洞穴 [ Bringmann, Gawrychowski, Mozes, 和 Weimann, SODDS 2018] 下, 无法真正解决。 在本文中, 我们通过显示 $O( n { { recompossition 战略 ) 来打破任何算算算算算法 。

0
下载
关闭预览

相关内容

专知会员服务
14+阅读 · 2021年5月21日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月26日
Arxiv
0+阅读 · 2021年7月26日
Arxiv
0+阅读 · 2021年7月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员