The (unweighted) \emph{tree edit distance} problem for $n$ node trees asks to compute a measure of dissimilarity between two rooted trees with node labels. The current best algorithm from more than a decade ago runs in $O(n ^ 3)$ time [Demaine, Mozes, Rossman, and Weimann, ICALP 2007]. The same paper also showed that $O(n ^ 3)$ is the best possible running time for any algorithm using the so-called \emph{decomposition strategy}, which underlies almost all the known algorithms for this problem. These algorithms would also work for the \emph{weighted} tree edit distance problem, which cannot be solved in truly sub-cubic time under the APSP conjecture [Bringmann, Gawrychowski, Mozes, and Weimann, SODA 2018]. In this paper, we break the cubic barrier by showing an $O(n ^ {2.9546})$ time algorithm for the \emph{unweighted} tree edit distance problem. We consider an equivalent maximization problem and use a dynamic programming scheme involving matrices with many special properties. By using a decomposition scheme as well as several combinatorial techniques, we reduce tree edit distance to the max-plus product of bounded-difference matrices, which can be solved in truly sub-cubic time [Bringmann, Grandoni, Saha, and Vassilevska Williams, FOCS 2016].
翻译:$n 节点树的问题( 未加权) \ emph{ tree 编辑距离 ) 。 美元节点树的问题要求计算两个有节点标签的根树之间差异的尺度。 目前十多年前的最佳算法在$O( n ) 3 美元的时间里运行。 同一文件还显示 $O( n ) 3 美元是使用所谓的 emph{ decomposition 战略 来计算任何算法的最佳运行时间。 这些算法几乎是这个问题所有已知的算法的基础。 这些算法还将为 \ emph{ 重量} 树编辑距离问题发挥作用, 而在 APSP 洞穴 [ Bringmann, Gawrychowski, Mozes, 和 Weimann, SODDS 2018] 下, 无法真正解决。 在本文中, 我们通过显示 $O( n { { recompossition 战略 ) 来打破任何算算算算算法 。