The performance and efficiency of running large-scale datasets on traditional computing systems exhibit critical bottlenecks due to the existing "power wall" and "memory wall" problems. To resolve those problems, processing-in-memory (PIM) architectures are developed to bring computation logic in or near memory to alleviate the bandwidth limitations during data transmission. NAND-like spintronics memory (NAND-SPIN) is one kind of promising magnetoresistive random-access memory (MRAM) with low write energy and high integration density, and it can be employed to perform efficient in-memory computation operations. In this work, we propose a NAND-SPIN-based PIM architecture for efficient convolutional neural network (CNN) acceleration. A straightforward data mapping scheme is exploited to improve the parallelism while reducing data movements. Benefiting from the excellent characteristics of NAND-SPIN and in-memory processing architecture, experimental results show that the proposed approach can achieve $\sim$2.6$\times$ speedup and $\sim$1.4$\times$ improvement in energy efficiency over state-of-the-art PIM solutions.
翻译:由于现有的“电动墙”和“模拟墙”问题,传统计算机系统大规模数据集运行的性能和效率显示出严重的瓶颈。为了解决这些问题,我们制定了一个基于NAND-SPIN(PIM)的PIM(PIM)结构,将计算逻辑带入或接近记忆,以缓解数据传输过程中的带宽限制。NAND-类似脊柱记忆(NAND-SPIN(NAND-SPIN))是一种很有希望的磁性随机存取存储,其写作能量低和集成密度高,可用于高效的模拟计算操作。在这项工作中,我们提议建立一个基于NAND-SPIN(PIM)的PIM(PIM)结构,以高效的脉动神经网络加速。一个直接的数据绘图计划被用来改进平行关系,同时减少数据移动。从NAND-SPIN(NAND-SPIN)和模拟处理结构的出色特点中受益的实验结果显示,拟议的方法可以实现2.6美元的时间和1美元/Sim$/1.4美元的速度计算。在州PIM(PIM)解决方案上提高能源效率。