Given a natural language that describes the user's demands, the NL2Code task aims to generate code that addresses the demands. This is a critical but challenging task that mirrors the capabilities of AI-powered programming. The NL2Code task is inherently versatile, diverse and complex. For example, a demand can be described in different languages, in different formats, and at different levels of granularity. This inspired us to do this survey for NL2Code. In this survey, we focus on how does neural network (NN) solves NL2Code. We first propose a comprehensive framework, which is able to cover all studies in this field. Then, we in-depth parse the existing studies into this framework. We create an online website to record the parsing results, which tracks existing and recent NL2Code progress. In addition, we summarize the current challenges of NL2Code as well as its future directions. We hope that this survey can foster the evolution of this field.
翻译:根据描述用户需求的自然语言, NL2Code 任务旨在生成满足需求的代码。 这是一项关键但具有挑战性的任务, 反映了AI- 动力编程的能力。 NL2Code 任务本质上是多功能的、多样的和复杂的。 例如, 需求可以用不同语言、 不同格式和不同的颗粒度描述。 这启发了我们为 NL2Code 做这次调查。 在这次调查中, 我们侧重于神经网络( NNN) 如何解决NL2Code 。 我们首先提出一个能够覆盖该领域所有研究的综合框架。 然后, 我们深入分析这个框架中的现有研究。 我们创建一个在线网站, 记录分解结果, 记录现有和最近NL2Code 的进展。 此外, 我们总结NL2Code 目前的挑战及其未来方向。 我们希望这项调查能够促进这个领域的演变 。