Latent fingerprints are among the most important and widely used evidence in crime scenes, digital forensics and law enforcement worldwide. Despite the number of advancements reported in recent works, we note that significant open issues such as independent benchmarking and lack of large-scale evaluation databases for improving the algorithms are inadequately addressed. The available databases are mostly of semi-public nature, lack of acquisition in the wild environment, and post-processing pipelines. Moreover, they do not represent a realistic capture scenario similar to real crime scenes, to benchmark the robustness of the algorithms. Further, existing databases for latent fingerprint recognition do not have a large number of unique subjects/fingerprint instances or do not provide ground truth/reference fingerprint images to conduct a cross-comparison against the latent. In this paper, we introduce a new wild large-scale latent fingerprint database that includes five different acquisition scenarios: reference fingerprints from (1) optical and (2) capacitive sensors, (3) smartphone fingerprints, latent fingerprints captured from (4) wall surface, (5) Ipad surface, and (6) aluminium foil surface. The new database consists of 1,318 unique fingerprint instances captured in all above mentioned settings. A total of 2,636 reference fingerprints from optical and capacitive sensors, 1,318 fingerphotos from smartphones, and 9,224 latent fingerprints from each of the 132 subjects were provided in this work. The dataset is constructed considering various age groups, equal representations of genders and backgrounds. In addition, we provide an extensive set of analysis of various subset evaluations to highlight open challenges for future directions in latent fingerprint recognition research.
翻译:潜在指纹是全球犯罪现场、数字取证和执法中最重要和广泛使用的证据之一。尽管近期的许多研究报告中都报告了许多进展,但我们注意到一些重要的开放性问题,如独立基准测试和缺乏用于改进算法的大规模评估数据库,尚未得到充分解决。现有数据库大部分是半公共性质的,缺乏在野环境下的数据采集和后处理流程。此外,它们并不代表类似于真实犯罪现场的逼真捕获场景,以评估算法的鲁棒性。此外,现有的潜在指纹识别数据库没有大量的唯一主体/指纹实例或没有提供参考指纹图像,以进行与潜在指纹的交叉比较。在本文中,我们推出了一个新的野外大规模潜在指纹数据库,其中包括五个不同的采集场景:光学和电容传感器的参考指纹、智能手机指纹、从墙面、iPad表面和铝箔表面捕获的潜在指纹。新数据库包含1,318个独特的指纹实例,涵盖了以上所有设置。总共提供了2,636个光学和电容传感器的参考指纹、1,318张智能手机手指照片以及每个主体的9,224个潜在指纹。该数据集考虑到各个年龄组、性别和背景的平等表示。此外,我们提供了一系列涵盖各种子集评估的分析,以突出潜在指纹识别研究未来方向中的开放挑战。